【英語論文の書き方】第78回 「データの解析(パート2):統計分析」について
2021年1月27日 14時40分
第77回では「データの解析(パート1):データ探索を行う」を取り上げました。
第78(今回)のテーマは
「データの解析(パート2):統計分析」についてです。
データの解析(パート1)では、データが意味することを
予備的に理解する方法についてお話しました。
今度は、データをさらに厳密に分析し、予備的に理解した内容を確かめます。
このプロセスには統計分析が必要となります。
今回、お伝えするのは以下の項目です。
・Match the analysis to the study design
・Look for significant results
・Should you transform the data?
・Perform a reality check on graphs
・Define outliers
・Choose the right variables
次はパート3に続きます。次回もぜひお読みいただければと思います。
第78(今回)のテーマは
「データの解析(パート2):統計分析」についてです。
データの解析(パート1)では、データが意味することを
予備的に理解する方法についてお話しました。
今度は、データをさらに厳密に分析し、予備的に理解した内容を確かめます。
このプロセスには統計分析が必要となります。
今回、お伝えするのは以下の項目です。
・Match the analysis to the study design
・Look for significant results
・Should you transform the data?
・Perform a reality check on graphs
・Define outliers
・Choose the right variables
次はパート3に続きます。次回もぜひお読みいただければと思います。
Analyzing your data (part 2 of 3): statistical analysis By Geoffrey Hart
In part 1 of this article, I described how to obtain a preliminary understanding of what your data means. Now it’s time to confirm that understanding by analyzing the data more rigorously. Doing so requires statistical analysis.
Always confirm that your actual data support the analytical method you chose. For example, common tests such as the t-test and ANOVA require normally distributed residuals (i.e., the error terms), not (as is commonly believed) normally distributed raw data. See Kéry and Hatfield (2003) for details. Your statistical software may test this assumption and warn you when a test is inappropriate; however, if the software’s documentation doesn’t state that the software confirms that your data meet the requirements for a test, perform the confirmation yourself. For example, ANOVA requires approximately equal (homogeneous) variance among the samples being compared. A test such as Levene’s test can confirm homogeneity of variance. If the software does perform such tests, learn where to find the results in the test’s output.
Note: If your experiment was not designed to support a specific statistical test, work with a statistician to find the optimal test for your data. Then, plan future experiments to support a specific test.
Nonparametric tests are less powerful than parametric tests because they use less of the information in the data; for example, a simple nonparametric test may use only the ranks of results (i.e., A > B) rather than the mean, standard deviation, skewness, or other characteristics of the data. But if you perform 100 trials, and A>B in all cases despite having very high standard deviation for the individual values of A and B, that result is as meaningful as a parametric test. Non-parametric tests have the additional benefit of being less affected by outliers and by assumptions about the data’s distribution.
Note: For normally distributed data, tests based on means are appropriate; tests based on medians are likely to be more appropriate for data that contains several large or small values that would distort the mean.
To confirm your choice, ask a statistician what transformation is most appropriate for your data and what test will confirm that the transformation succeeded. Transformations don’t always succeed. For example, if the goal of transformation is to produce a normal distribution for the residuals, you can perform a test such as the Kolmogorov–Smirnov test to confirm that the residuals are now normally distributed.
Transformation can create problems. Consider a logarithmic transformation. First, it may lead you to ignore important characteristics of your data, such as the fact that your study system does not produce normally distributed data. Second, transformed data shows a different pattern than the original data. Forgetting this leads to misleading conclusions. Third, testing hypotheses based on the transformed data may accurately reflect the statistical significance of the transformed data, but not the real-world (practical) significance of the non-transformed data. Fourth, using a logarithmic transformation for count data (e.g., the number of individuals) requires the addition of a small value to all raw data to eliminate 0 values before the transformation. This transformation is unlikely to be necessary for a continuous variable such as length; if you are able to measure the length, then by definition that length cannot be 0 (i.e., a physical object always has some non-zero length). This value must be chosen to avoid distorting the results. O’Hara and Kotze (2010) and Feng et al. (2019) describe some of the problems with logarithmic transformation. Warton and Hui (2011) provide some cautions about arcsine transformations.
Instead of saying that two trends are similar because the zigs and zags of the graphs appear to follow the same pattern, quantify that similarity. For example, calculate a correlation (e.g., use Pearson’s r) to confirm that the trend is statistically significant (i.e., is more likely to be real). For time series, consider repeating your analysis using time-lagged data; that is, test whether the value at time t+1 correlates with the value at time t. This is particularly important if you know that changes in an independent variable (e.g., adding heat to a system) will take some time to produce a result (e.g., a change in the system’s temperature).
Note: Use terminology carefully. Correlation strengths should be reported as correlation coefficients (usually, r values), whereas regression strengths should be reported as goodness-of-fit values (usually, R2). They are not the same parameter: R2 = r ´ r. If you only calculate a correlation, the calculation will not provide a regression equation.
In part 3 of this article, I’ll describe how to present your results.
Kéry, M., Hatfield, J.S. 2003. Normality of raw data in general linear models: the most widespread myth in statistics. Bulletin of the Ecological Society of America 84(2): 92-94. <https://doi.org/10.1890/0012-9623(2003)84[92:NORDIG]2.0.CO;2>
O’Hara, R.B., Kotze, D.J. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1(2): 118-122. <https://doi.org/10.1111/j.2041-210X.2010.00021.x>
Warton, D.I., Hui, F.K.C. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1): 3-10. <https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/10-0340.1>
Match the analysis to the study design
Ideally, an experiment should be designed to directly support a specific form of data analysis. For example, a replicated random block experimental design with a control and one or more treatments is popular because it directly supports one-way ANOVA, with “treatment” as the factor. Conversely, if you rigorously juxtapose a treatment with its control to create pairs of values obtained under nearly identical conditions, a paired-difference analysis (e.g., a t-test) may be suitable.Always confirm that your actual data support the analytical method you chose. For example, common tests such as the t-test and ANOVA require normally distributed residuals (i.e., the error terms), not (as is commonly believed) normally distributed raw data. See Kéry and Hatfield (2003) for details. Your statistical software may test this assumption and warn you when a test is inappropriate; however, if the software’s documentation doesn’t state that the software confirms that your data meet the requirements for a test, perform the confirmation yourself. For example, ANOVA requires approximately equal (homogeneous) variance among the samples being compared. A test such as Levene’s test can confirm homogeneity of variance. If the software does perform such tests, learn where to find the results in the test’s output.
Note: If your experiment was not designed to support a specific statistical test, work with a statistician to find the optimal test for your data. Then, plan future experiments to support a specific test.
Look for significant results
Choose an appropriate category of test. Parametric tests are most powerful because they use more aspects of the information contained in the data; for example, they account for both the mean and the variance of the data. However, they require independent, continuously distributed data, and often require normally distributed residuals and homogeneous variance. Here, “independent” means that the datasets being compared don’t depend on each other. For example, if you grow plants from different treatments in the same pot, their interactions within the pot may determine the response more strongly than the treatment.Nonparametric tests are less powerful than parametric tests because they use less of the information in the data; for example, a simple nonparametric test may use only the ranks of results (i.e., A > B) rather than the mean, standard deviation, skewness, or other characteristics of the data. But if you perform 100 trials, and A>B in all cases despite having very high standard deviation for the individual values of A and B, that result is as meaningful as a parametric test. Non-parametric tests have the additional benefit of being less affected by outliers and by assumptions about the data’s distribution.
Note: For normally distributed data, tests based on means are appropriate; tests based on medians are likely to be more appropriate for data that contains several large or small values that would distort the mean.
Should you transform the data?
When data don’t meet the requirements for a statistical test, choose another test that is more suitable. The original test will not produce trustworthy results even if the result is statistically significant. However, you may still want to use that test because it perfectly fits your experimental design. In that case, it’s sometimes appropriate to transform the data to meet the test’s requirements. For this approach to be valid, the data should be continuous and the transformation should be invertible; that is, inverting the transformation should restore the original data. For example, an exponential function inverts the corresponding logarithmic function.To confirm your choice, ask a statistician what transformation is most appropriate for your data and what test will confirm that the transformation succeeded. Transformations don’t always succeed. For example, if the goal of transformation is to produce a normal distribution for the residuals, you can perform a test such as the Kolmogorov–Smirnov test to confirm that the residuals are now normally distributed.
Transformation can create problems. Consider a logarithmic transformation. First, it may lead you to ignore important characteristics of your data, such as the fact that your study system does not produce normally distributed data. Second, transformed data shows a different pattern than the original data. Forgetting this leads to misleading conclusions. Third, testing hypotheses based on the transformed data may accurately reflect the statistical significance of the transformed data, but not the real-world (practical) significance of the non-transformed data. Fourth, using a logarithmic transformation for count data (e.g., the number of individuals) requires the addition of a small value to all raw data to eliminate 0 values before the transformation. This transformation is unlikely to be necessary for a continuous variable such as length; if you are able to measure the length, then by definition that length cannot be 0 (i.e., a physical object always has some non-zero length). This value must be chosen to avoid distorting the results. O’Hara and Kotze (2010) and Feng et al. (2019) describe some of the problems with logarithmic transformation. Warton and Hui (2011) provide some cautions about arcsine transformations.
Perform a reality check on graphs
While you explored your data visually using graphs, you began to detect certain patterns and trends (see part 1 of this article). Now it’s time to confirm those interpretations. A preliminary graph of your data may show data that falls along a straight or curved line, or the data may form distinct clusters separated by a clear gap. Choose an analytical method that agrees with that pattern. For example, if your graph shows data that parallels the line y=x, you can analyze this data as a single group using a single linear regression equation. But if the data forms one group that lies above the line and a second group that falls below that line (e.g., one group of data falls mostly above the line; another group falls mostly below), consider performing separate regressions for the two groups of data to see if it improves your results. So long as there is a plausible reason to expect two distinct groups with different values (e.g., an organism with two sexes), you can easily justify this analysis.Instead of saying that two trends are similar because the zigs and zags of the graphs appear to follow the same pattern, quantify that similarity. For example, calculate a correlation (e.g., use Pearson’s r) to confirm that the trend is statistically significant (i.e., is more likely to be real). For time series, consider repeating your analysis using time-lagged data; that is, test whether the value at time t+1 correlates with the value at time t. This is particularly important if you know that changes in an independent variable (e.g., adding heat to a system) will take some time to produce a result (e.g., a change in the system’s temperature).
Note: Use terminology carefully. Correlation strengths should be reported as correlation coefficients (usually, r values), whereas regression strengths should be reported as goodness-of-fit values (usually, R2). They are not the same parameter: R2 = r ´ r. If you only calculate a correlation, the calculation will not provide a regression equation.
Define outliers
When you look for outliers that should be excluded from your analysis, objectively define your thresholds for identifying an outlier. For example, use a criterion such as excluding values that fall more than three standard deviations from the mean; this represents p < 0.01, and gives you reasonable confidence the data can be excluded. However, if you find several outliers, ask whether they may represent real results rather than errors. For example, in a study of plant communities, outliers may represent individuals incorrectly assigned to the focal species, or genetically unusual members of the correct species. They may be data-entry errors. The more outliers you find, and the more they cluster together, the more likely it is that they mean something.Choose the right variables
Often, two or more related variables may be relevant to an analysis, and one is likely to relate more directly to the physical process you’re studying and produce better results. For example, many studies of regional plant growth use the mean annual temperature as an independent variable, but this is misleading. For example, Dublin (Ireland) has a mean annual temperature of about 9.7°C and Toronto (Canada) has a mean annual temperature of 8.3°C. That difference seems minor, but plants are dormant for at least 3 months of the year in Toronto because temperatures decrease below 0°C, whereas plants can grow year-round in Dublin because the temperature rarely drops below 5°C. The annual temperature range (lowest and highest monthly averages) or the temperature during the growing season is likely to be more meaningful.In part 3 of this article, I’ll describe how to present your results.
Acknowledgments
I’m grateful for the reality check on my statistical descriptions provided by Dr. Julian Norghauer (https://www.statsediting.com/about.html). Any errors in this article are my sole responsibility.Reference
Feng, C.Y., Wang, H.Y., Lu, N.J. et al. 2019. Log-transformation and its implications for data analysis. Shanghai Archives of Psychiatry 26(2): 105-109. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/>.Kéry, M., Hatfield, J.S. 2003. Normality of raw data in general linear models: the most widespread myth in statistics. Bulletin of the Ecological Society of America 84(2): 92-94. <https://doi.org/10.1890/0012-9623(2003)84[92:NORDIG]2.0.CO;2>
O’Hara, R.B., Kotze, D.J. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1(2): 118-122. <https://doi.org/10.1111/j.2041-210X.2010.00021.x>
Warton, D.I., Hui, F.K.C. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1): 3-10. <https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/10-0340.1>
無料メルマガ登録
これからも約2週間に一度のペースで、英語で論文を書く方向けに役立つコンテンツをお届けしていきますので、お見逃しのないよう、上記のフォームよりご登録ください。
もちろん無料です。
バックナンバー
第1回 if、in case、when の正しい使い分け:確実性の程度を英語で正しく表現する
第2回 「装置」に対する英語表現
第3回 助動詞のニュアンスを正しく理解する:「~することが出来た」「~することが出来なかった」の表現
第4回 「~を用いて」の表現:by と with の違い
第5回 技術英文で使われる代名詞のitおよび指示代名詞thisとthatの違いとそれらの使用法
第6回 原因・結果を表す動詞の正しい使い方:その1 原因→結果
第7回 原因・結果を表す動詞の使い方:その2 結果→原因
第8回 受動態の多用と誤用に注意
第9回 top-heavyな英文を避ける
第10回 名詞の修飾語を前から修飾する場合の表現法
第11回 受動態による効果的表現
第12回 同格を表す接続詞thatの使い方
第13回 「技術」を表す英語表現
第14回 「特別に」を表す英語表現
第15回 所有を示すアポストロフィー + s ( ’s) の使い方
第16回 「つまり」「言い換えれば」を表す表現
第17回 寸法や重量を表す表現
第18回 前置詞 of の使い方: Part 1
第19回 前置詞 of の使い方: Part 2
第20回 物体や物質を表す英語表現
第21回 句動詞表現より1語動詞での表現へ
第22回 不定詞と動名詞: Part 1
第23回 不定詞と動名詞の使い分け: Part 2
第24回 理由を表す表現
第25回 総称表現 (a, theの使い方を含む)
第26回研究開発」を表す英語表現
第27回 「0~1の数値は単数か複数か?」
第28回 「時制-現在形の動詞の使い方」
第29回 then, however, therefore, for example など接続副詞の使い方
第30回 まちがえやすいusing, based onの使い方-分詞構文
第31回 比率や割合の表現(ratio, rate, proportion, percent, percentage)
第32回 英語論文の書き方 総集編
第33回 Quality Review Issue No. 23 report, show の時制について
第34回 Quality Review Issue No. 24 参考文献で日本語論文をどう記載すべきか
第35回 Quality Review Issue No. 25 略語を書き出すときによくある間違いとは?
第36回 Quality Review Issue No. 26 %と℃の前にスペースを入れるかどうか
第37回 Quality Review Issue No. 27 同じ種類の名詞が続くとき冠詞は付けるべき?!
第38回 Quality Review Issue No. 22 日本人が特に間違えやすい副詞の使い方
第39回 Quality Review Issue No. 21 previous, preceding, earlierなどの表現のちがい
第40回 Quality Review Issue No. 20 using XX, by XXの表現の違い
第41回 Quality Review Issue No. 19 increase, rise, surgeなど動詞の選び方
第42回 Quality Review Issue No. 18 論文での受動態の使い方
第43回 Quality Review Issue No. 17 Compared with とCompared toの違いは?
第44回 Reported about, Approach toの前置詞は必要か?
第45回 Think, propose, suggest, consider, believeの使い分け
第46回 Quality Review Issue No. 14 Problematic prepositions scientific writing: by, through, and with -3つの前置詞について
第47回 Quality Review Issue No. 13 名詞を前から修飾する場合と後ろから修飾する場合
第48回 Quality Review Issue No. 13 単数用法のThey
第49回 Quality Review Issue No. 12 study, investigation, research の微妙なニュアンスのちがい
第50回 SinceとBecause 用法に違いはあるのか?
第51回 Figure 1とFig.1の使い分け
第52回 数式を含む場合は現在形か?過去形か?
第53回 Quality Review Issue No. 8 By 2020とup to 2020の違い
第54回 Quality Review Issue No. 7 high-accuracy data? それとも High accurate data? 複合形容詞でのハイフンの使用
第55回 実験計画について
第56回 参考文献について
第57回 データの分析について
第58回 強調表現について
第59回 共同研究の論文執筆について
第60回 論文の略語について
第61回 冠詞の使い分けについて
第62回 大文字表記について
第63回 ダッシュの使い分け
第64回 英語の言葉選びの難しさについて
第65回 過去形と能動態について
第66回 「知識の呪い」について
第67回 「文献の引用パート1」について
第68回 「文献の引用パート2」について
第69回 「ジャーナル用の図表の準備」について
第70回 「結論を出す ~AbstractとConclusionsの違い~」について
第71回 「研究倫理 パート1: 研究デザインとデータ報告」について
第72回 「研究倫理 パート2: 読者の時間を無駄にしない」について
第73回 「記号と特殊文字の入力」について
第74回 「Liner regression(線形回帰)は慎重に」について
第75回 「Plagiarism(剽窃)を避ける」について
第76回 研究結果がもたらす影響を考える
第78回 「データの解析(パート2):統計分析」について
第2回 「装置」に対する英語表現
第3回 助動詞のニュアンスを正しく理解する:「~することが出来た」「~することが出来なかった」の表現
第4回 「~を用いて」の表現:by と with の違い
第5回 技術英文で使われる代名詞のitおよび指示代名詞thisとthatの違いとそれらの使用法
第6回 原因・結果を表す動詞の正しい使い方:その1 原因→結果
第7回 原因・結果を表す動詞の使い方:その2 結果→原因
第8回 受動態の多用と誤用に注意
第9回 top-heavyな英文を避ける
第10回 名詞の修飾語を前から修飾する場合の表現法
第11回 受動態による効果的表現
第12回 同格を表す接続詞thatの使い方
第13回 「技術」を表す英語表現
第14回 「特別に」を表す英語表現
第15回 所有を示すアポストロフィー + s ( ’s) の使い方
第16回 「つまり」「言い換えれば」を表す表現
第17回 寸法や重量を表す表現
第18回 前置詞 of の使い方: Part 1
第19回 前置詞 of の使い方: Part 2
第20回 物体や物質を表す英語表現
第21回 句動詞表現より1語動詞での表現へ
第22回 不定詞と動名詞: Part 1
第23回 不定詞と動名詞の使い分け: Part 2
第24回 理由を表す表現
第25回 総称表現 (a, theの使い方を含む)
第26回研究開発」を表す英語表現
第27回 「0~1の数値は単数か複数か?」
第28回 「時制-現在形の動詞の使い方」
第29回 then, however, therefore, for example など接続副詞の使い方
第30回 まちがえやすいusing, based onの使い方-分詞構文
第31回 比率や割合の表現(ratio, rate, proportion, percent, percentage)
第32回 英語論文の書き方 総集編
第33回 Quality Review Issue No. 23 report, show の時制について
第34回 Quality Review Issue No. 24 参考文献で日本語論文をどう記載すべきか
第35回 Quality Review Issue No. 25 略語を書き出すときによくある間違いとは?
第36回 Quality Review Issue No. 26 %と℃の前にスペースを入れるかどうか
第37回 Quality Review Issue No. 27 同じ種類の名詞が続くとき冠詞は付けるべき?!
第38回 Quality Review Issue No. 22 日本人が特に間違えやすい副詞の使い方
第39回 Quality Review Issue No. 21 previous, preceding, earlierなどの表現のちがい
第40回 Quality Review Issue No. 20 using XX, by XXの表現の違い
第41回 Quality Review Issue No. 19 increase, rise, surgeなど動詞の選び方
第42回 Quality Review Issue No. 18 論文での受動態の使い方
第43回 Quality Review Issue No. 17 Compared with とCompared toの違いは?
第44回 Reported about, Approach toの前置詞は必要か?
第45回 Think, propose, suggest, consider, believeの使い分け
第46回 Quality Review Issue No. 14 Problematic prepositions scientific writing: by, through, and with -3つの前置詞について
第47回 Quality Review Issue No. 13 名詞を前から修飾する場合と後ろから修飾する場合
第48回 Quality Review Issue No. 13 単数用法のThey
第49回 Quality Review Issue No. 12 study, investigation, research の微妙なニュアンスのちがい
第50回 SinceとBecause 用法に違いはあるのか?
第51回 Figure 1とFig.1の使い分け
第52回 数式を含む場合は現在形か?過去形か?
第53回 Quality Review Issue No. 8 By 2020とup to 2020の違い
第54回 Quality Review Issue No. 7 high-accuracy data? それとも High accurate data? 複合形容詞でのハイフンの使用
第55回 実験計画について
第56回 参考文献について
第57回 データの分析について
第58回 強調表現について
第59回 共同研究の論文執筆について
第60回 論文の略語について
第61回 冠詞の使い分けについて
第62回 大文字表記について
第63回 ダッシュの使い分け
第64回 英語の言葉選びの難しさについて
第65回 過去形と能動態について
第66回 「知識の呪い」について
第67回 「文献の引用パート1」について
第68回 「文献の引用パート2」について
第69回 「ジャーナル用の図表の準備」について
第70回 「結論を出す ~AbstractとConclusionsの違い~」について
第71回 「研究倫理 パート1: 研究デザインとデータ報告」について
第72回 「研究倫理 パート2: 読者の時間を無駄にしない」について
第73回 「記号と特殊文字の入力」について
第74回 「Liner regression(線形回帰)は慎重に」について
第75回 「Plagiarism(剽窃)を避ける」について
第76回 研究結果がもたらす影響を考える
第78回 「データの解析(パート2):統計分析」について