【英語論文の書き方】第81回 「データ以外のもの(パート2)」について

2021年5月21日 16時45分

第80回では「データ、その他の大事なものをバックアップする(パート1)」を取り上げました。

第81回(今回)のテーマは
「データ以外のもの(パート2)」についてです。
 
この記事のパート1では、パソコンのデータを盗難、破壊行為、
事故による損失などから守るためにはどのようにバックアップを行えば良いか、
ということについてお話しました。
 
今回のパート2では、データ以外のものについてお話します。
これは、皆さんがこれまでに考えたことがないかもしれませんが、
研究にとってはデータと同じくらい重要なことです。
 
場合によっては、このようなものを失ってしまうと、
これらを作るために行った作業を繰り返さなければならず、
何年も前の研究段階に戻ることとなってしまうかもしれません。
 
大変興味深い内容となっていますので、是非お読みいただければと思います。

 

Part II: Things other than data By Geoffrey Hart

In part I of this article, I discussed how to backup your computer data to protect it from theft, sabotage, or accidental loss. In this part, I’ll discuss non-data things you may not have considered but that are no less essential to your work. In some cases, loss of these things may set you back years in your research as you try to repeat the work you performed to create these things.

Implicit knowledge

“Implicit” knowledge represents information that has become so much a part of your standard thought process that you are no longer consciously aware of its importance. These include things as simple as the knowledge that you should not pipette caustic or toxic materials using your mouth and the knowledge that you should lock your lab door before returning home at the end of the day. This knowledge can be difficult to identify without help from someone who isn’t intimately familiar with your work, such as the reason you use a specific chemical extraction method instead of published alternatives. A new graduate student in your lab is an excellent person to help you identify such knowledge, since they have not yet worked with you long enough to understand this knowledge without explanation. Document this knowledge in your laboratory procedures manual to ensure that it will not be lost if a member of your research group retires or moves to another university or institute.
Implicit knowledge also includes any lessons you learned during your research. This may be details of changes in a standard methodology, or things such as learning that a sample size of 10 individuals is inadequate because of high variation in the study population, and that a minimum sample size of 20 individuals is necessary to increase the chance of detecting statistically significant results. Other lessons include considerations related to field studies. For example, if you’re studying part of a commercial forest that is being managed for timber production, you must find ways to ensure that your study plots are not accidentally harvested (e.g., installing warning signs or fences). Similarly, if you’re studying an agricultural system, talk with the farmer who is cooperating with you by providing a field to ensure that they don’t change their cultivation methods without first discussing the change with you. In both cases, there are usually ways to negotiate with your cooperator to protect your investment in those study sites.

Explicit knowledge

More explicit and easily identifiable knowledge includes details of your research and analytical methods. Even when these are based on clear and standardized publicly available protocols, there are usually modifications you have made based on your experience. For example, a chemical analysis may require small changes in the quantities and concentrations of reagents to account for unique properties of a study organism. You will often see this appear in journal papers with words such as “the method of Hart (2020), with small modifications”, but often there are no details about what those modifications are. Report those modifications in your papers so that this implicit knowledge becomes explicit, so that other researchers can benefit from what you’ve learned, and record these modifications in your lab or research protocol manuals so that all members of your research will group will use the same methods.
Many research groups spend considerable time optimizing how their hardware and software work. This often results from slight modifications to hardware or software settings for analytical equipment, most often with input from the manufacturer. For example, a particular model of instrument may exhibit calibration drift more often than other models, so that it’s necessary to calibrate it more frequently than the user manual says or to use a different calibration standard. This knowledge may not be included in the instrument’s user manual, or may be present but may not be read by a new graduate student who has used similar equipment in another lab. Indeed, specifically defining a calibration method and schedule and displaying it prominently near the instrument will increase the likelihood that this method is used consistently by your whole research group.
Software customizations are often developed to save time or improve the results of an analysis. Sharing these shortcuts with members of your research group improves everyone’s productivity and efficiency. This category of information includes scripts developed for statistical software that cause the software to perform a standard series of tests (e.g., to test for homogeneity of variance before performing ANOVA) or data-cleaning measures (e.g., to identify and highlight outliers). It may even include methods of detecting data-entry errors for data that is not created in its initial form as a computer file (e.g., data that is entered manually rather than recorded by a datalogger). Examples include interviews with human subjects, who most often record their responses on paper. One simple but excellent way to detect data-entry errors is to have two of your group independently enter the data into a computer file, such as an Excel worksheet. You can then compare the data by subtraction: if the result of subtracting the value from worksheet 2 from the corresponding value in worksheet 1 is not equal to 0, this means that one of the two values is incorrect, and returning to the original data will let you find and correct the problem.
Note: Computer scientists use the phrase “garbage in, garbage out” to refer to the consequences of failing to ensure that your input data is of high quality. Many graduate students never learn to carefully confirm the quality of their input data. This is something you should teach each new member of your research group. Lives may be at stake, not to mention your professional reputation.

More than just data

So far, I’ve focused on intangible things (things you cannot touch) such as data and procedural information. But it’s also important to create backups for physical things. For example, you may have spent years breeding a specific genotype of an organism (e.g., mice with specific genetic properties that make them useful in physiological or pharmaceutical research) or specific bacterial or fungal strains that you isolated from a forest during your field research, and that show promise (e.g., because they improve plant survival in harsh environments). You may also develop specialized hardware that is essential for performing your research.
Although carefully documenting what you’ve done to develop these materials is important, it won’t help if your lab is destroyed by an accident (e.g., a fire in a neighboring lab) or a disaster (e.g., a hurricane or tsunami). You may be able to repeat a 5-year development process in only 2 years, but that’s still 2 years of lost time—time when you are unable to do any new research. This is particularly important if you live in a place such as California that is highly vulnerable to severe wildfires or in a coastal area that is vulnerable to hurricanes (typhoons) and tidal waves. Some of these problems are nearly impossible to predict; for others, you can predict in general terms that such phenomena will increase in frequency in response to global climate change.
I have read stories of graduate students rushing to their laboratory as a hurricane approaches, so they can bring home all of their laboratory subjects (including aquariums full of exotic ant species, mice undergoing various medical treatments, and petri dishes full of microorganisms). In an emergency, that may be the best that you can do. A better solution is to be proactive and avoid the need for such an emergency response. Instead, identify colleagues who can store and preserve your materials so that you can retrieve those materials quickly if your copies are lost. You can offer to reciprocate by storing their materials. This often takes the form of international cooperations, such as seed banks, but you can also do it on a small scale, with exchanges between individual labs. Multiple backups, distributed across countries or continents, are even better, since it’s not impossible that one cooperator will be unavailable (as was the case during the COVID-19 pandemic).

Learning what is important

If you don’t already have a comprehensive list of the intangible and physical things that make up your research, consider making time for your research group to hold a meeting to document these things. Most will not be copied and preserved by your employer’s computer staff, so you’ll need to find a way to protect them yourself.
 

無料メルマガ登録

メールアドレス
お名前

これからも約2週間に一度のペースで、英語で論文を書く方向けに役立つコンテンツをお届けしていきますので、お見逃しのないよう、上記のフォームよりご登録ください。
 
もちろん無料です。

バックナンバー

第1回 if、in case、when の正しい使い分け:確実性の程度を英語で正しく表現する

第2回 「装置」に対する英語表現

第3回 助動詞のニュアンスを正しく理解する:「~することが出来た」「~することが出来なかった」の表現

第4回 「~を用いて」の表現:by と with の違い

第5回 技術英文で使われる代名詞のitおよび指示代名詞thisとthatの違いとそれらの使用法

第6回 原因・結果を表す動詞の正しい使い方:その1 原因→結果

第7回 原因・結果を表す動詞の使い方:その2 結果→原因

第8回 受動態の多用と誤用に注意

第9回 top-heavyな英文を避ける

第10回 名詞の修飾語を前から修飾する場合の表現法

第11回 受動態による効果的表現

第12回 同格を表す接続詞thatの使い方

第13回 「技術」を表す英語表現

第14回 「特別に」を表す英語表現

第15回 所有を示すアポストロフィー + s ( ’s) の使い方

第16回 「つまり」「言い換えれば」を表す表現

第17回 寸法や重量を表す表現

第18回 前置詞 of の使い方: Part 1

第19回 前置詞 of の使い方: Part 2

第20回 物体や物質を表す英語表現

第21回 句動詞表現より1語動詞での表現へ

第22回 不定詞と動名詞: Part 1

第23回 不定詞と動名詞の使い分け: Part 2

第24回 理由を表す表現

第25回 総称表現 (a, theの使い方を含む)

第26回研究開発」を表す英語表現

第27回 「0~1の数値は単数か複数か?」

第28回 「時制-現在形の動詞の使い方」

第29回  then, however, therefore, for example など接続副詞の使い方​

第30回  まちがえやすいusing, based onの使い方-分詞構文​

第31回  比率や割合の表現(ratio, rate, proportion, percent, percentage)

第32回 英語論文の書き方 総集編

第33回 Quality Review Issue No. 23 report, show の時制について​

第34回 Quality Review Issue No. 24 参考文献で日本語論文をどう記載すべきか​

第35回 Quality Review Issue No. 25 略語を書き出すときによくある間違いとは?​

第36回 Quality Review Issue No. 26 %と℃の前にスペースを入れるかどうか

第37回 Quality Review Issue No. 27 同じ種類の名詞が続くとき冠詞は付けるべき?!​

第38回 Quality Review Issue No. 22  日本人が特に間違えやすい副詞の使い方​

第39回 Quality Review Issue No. 21  previous, preceding, earlierなどの表現のちがい

第40回 Quality Review Issue No. 20 using XX, by XXの表現の違い

第41回 Quality Review Issue No. 19 increase, rise, surgeなど動詞の選び方

第42回 Quality Review Issue No. 18 論文での受動態の使い方​

第43回 Quality Review Issue No. 17  Compared with とCompared toの違いは?​

第44回 Reported about, Approach toの前置詞は必要か?​

第45回 Think, propose, suggest, consider, believeの使い分け​

第46回 Quality Review Issue No. 14  Problematic prepositions scientific writing: by, through, and with -3つの前置詞について​

第47回 Quality Review Issue No. 13 名詞を前から修飾する場合と後ろから修飾する場合​

第48回 Quality Review Issue No. 13 単数用法のThey​

第49回 Quality Review Issue No. 12  study, investigation, research の微妙なニュアンスのちがい

第50回 SinceとBecause 用法に違いはあるのか?

第51回 Figure 1とFig.1の使い分け

第52回 数式を含む場合は現在形か?過去形か?

第53回 Quality Review Issue No. 8  By 2020とup to 2020の違い

第54回 Quality Review Issue No. 7  high-accuracy data? それとも High accurate data? 複合形容詞でのハイフンの使用

第55回 実験計画について

第56回 参考文献について

第57回 データの分析について

第58回 強調表現について

第59回 共同研究の論文執筆について

第60回 論文の略語について

第61回 冠詞の使い分けについて

第62回 大文字表記について

第63回 ダッシュの使い分け

第64回 英語の言葉選びの難しさについて

第65回 過去形と能動態について

第66回 「知識の呪い」について

第67回 「文献の引用パート1」について

第68回 「文献の引用パート2」について

第69回 「ジャーナル用の図表の準備」について

第70回 「結論を出す ~AbstractとConclusionsの違い~」について

第71回 「研究倫理 パート1: 研究デザインとデータ報告」について

第72回 「研究倫理 パート2: 読者の時間を無駄にしない」について

第73回 「記号と特殊文字の入力」について

第74回 「Liner regression(線形回帰)は慎重に」について

第75回 「Plagiarism(剽窃)を避ける」について

第76回 研究結果がもたらす影響を考える

第77回 「データの解析(パート1):データ探索を行う」について

第78回 「データの解析(パート2):統計分析」について

第79回 「データの解析(パート3):データを提示する」について

第80回 データ、その他の大事なものをバックアップする(パート1)


〒300-1206
茨城県牛久市ひたち野西3-12-2
オリオンピアA-5

TEL 029-870-3307
FAX 029-870-3308
ワールド翻訳サービス スタッフブログ ワールド翻訳サービス Facebook ワールド翻訳サービスの動画紹介